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Dynamic Analysis and Design of Laminated Composite Beams

with Multiple Damping Layers

Mohan D. Rao* and Shulin Het
Michigan Technological University, Houghton, Michigan 49931

This paper describes the formulation of a theory for the prediction of damping and natural frequencies of
laminated composite beams with multiple viscoelastic damping layers. The damping layers are constrained (or
sandwiched) by anisotropic laminates. The in-plane shear strains of the damping layers and the constraining
layers are included in the model. Closed-form solutions for the resonance frequencies and modal loss factors of
the composite beam system under simple supports are derived using the energy and Ritz method. A parametric
study has been conducted to study the variation of dynamic stiffness and modal loss factor of the system with
structural parameters (e.g., the ply orientations of laminas, thickness of the damping layers and the laminates),
operating temperature, and damping material properties. The design of composite beams for maximizing the
damping capacity is also presented in this paper which includes the determination of operating temperature
range corresponding to given structural parameters and finding optimal structural parameters corresponding to
given temperature range. Finally, some experimental results are compared with theory for the cases of single and
double damping layer beam systems that show good agreement between predicted and measured natural

frequencies.
Nomenclature

C(@) = the ith damping layer ( =1,...,2N — 1)

Ec, = complex elastic modulus of the ith damping layer

Ely = elastic storage modulus of the ith damping layer

Gep = complex shear modulus of the ith damping layer

Gép = shear storage modulus of the ith damping layer

Hey; = thickness of the ith damping layer

H; = thickness of the ith laminate ({ = 1, ..., 2N)

ki = constant-element in the coefficient matrix of Eq.
B6)Gji=1,...,n)

L = total length of the composite beam

M = mass per unit length of the composite beam

2N = total number of laminates of the composite beam

N; = number of layers in the ith laminate

q(x, t) = external load on the composite beam along z

A direction

o = element of the transformed reduced stiffness
matrix of the jth layer of the ith laminate

Tk = kinetic energy of the composite beam

t? = thickness of the jth layer of the ith laminate

Usg = total strain energy of all of the laminates

Ue = total strain energy of the damping layers

Uu® = strain energy of the ith laminate

Ucg = strain energy of the ith damping layer

Ucgy = longitudinal displacement of the ith damping
layer

u; = longitudinal displacement of the ith laminate

w = work done by g(x, ¢)

w(x, t) = transverse displacement of every layer of the
composite beam

x = longitudinal coordinate

z = thickness coordinate

z9 = z{? (see Fig. 1)

z}’) = z coordinate of the surface close to the xy plane of
the jth layer of the ith laminate

badd = z coordinate of the middle surface of the jth layer

of the ith laminate
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v5P = in-plane (xy plane) shear strain of the ith damping
layer (i =1,2,...,2N - 1)

&0 = xz plane shear strain of the ith damping layer
(i=1,...,2N-1)

v9 = in-plane (xy plane) shear strain of the /th laminate
G=1,...,2N)

AK;; = cofactor of k;; in the coefficient matrix of Eq.
(36)

8 = variational operator

e = longitudinal strain of the ith damping layer

eV = longitudinal strain of the ith laminate

1 = modal loss factor of the composite beam

e = shear or extensional loss factor of the ith

damping material
) = flexural vibration frequency (rad/s)

., = resonance frequency of the composite beam

6N = angle between the fiber direction of the jth layer
of the ith laminate and x axis .

oci) = density of the ith damping material

0i = density of the ith lamina material

o = x directional normal stress component of the jth
layer of the /th laminate

ol = y directional normal stress component of the jth
layer of the ith laminate

T%,j) = xy plane shear stress component of the jth layer

of the ith laminate

Introduction

HE dynamic analysis of sandwich beams and plates has

been one of the central topics of investigation in the field
of noise and vibration control for over thirty years. The pio-
neering work in analyzing the damping behavior of a primary
beam (structure) with a viscoelastic damping layer and a con-
straining beam added on to it was done by Ross et al.! Since
then, many papers have appeared in the literature for analyz-
ing sandwich structures including damping of bonded struc-
tures incorporating viscoelastic damping layers,>® and struc-
tures with multiple damping layers.>!! The cited analyses for
multiple damping layer, however, are valid only for the case of
elastic and isotropic face plates and constraining layers.

In recent years, research has been concentrated on the anal-
ysis of anisotropic laminated damped beams and plates. When
the two face plates are composite laminates, the previous
models developed for isotropic face plates are not accurate.
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Tujimota et al.!® used both experimental work and theory for
sandwich beams with isotropic face plates to study the damp-
ing characteristics of multilayer composite sandwich plates. In
some cases, especially for the anisotropic case, the experimen-
tal results diverged from the numerical results. Part of the
reason for this discrepancy was believed to be the anisotropic
nature of each of the face plates. Mukhopadhyay and Kings-
bury'! pointed out that when the sandwich plate undergoes
flexural deformation, the anisotropic facings will not only
deform under normal strain, but also undergo shear deforma-
tion in their own planes, because of the coupling between the
bending and extensional motion, and the coupling between
shear and extensional deformation. Unlike conventional sand-
wich beams with isotropic facings, the additional in-plane
shear deformation in the face plates will influence the in-plane
shear deformation of the damping layer. Also, when the fac-
ings are made of composite materials, the material damping of
the face plates needs to be included in the analysis. A compre-
hensive model to predict the damping of composite laminated
plates with a single damping layer has been developed by
Barrett.!?

In this- paper, the authors have developed a comprehensive,
yet simple model to study the dynamic behavior of multi-
damping layer composite beams with anisotropic laminated
constraining layers. The dominating factors that affect the
damping efficiency of the composite beam are believed to be
the shear deformation of the damping layers in both the xz
plane and the xy plane (see Fig. 1a), and are considered in the
current analysis. Numerical examples are presented in the
paper to show the effects of structural parameters, operating
temperature, and different damping materials on the system
dynamic parameters. The design procedure of composite
beams is also illustrated using the preceding numerical results
for various cases.

Theory

The multidamping layer composite beam is shown in Fig.
la. For determining the strain fields of the composite beam,
the extensional and the in-plane shear strains in the constrain-
ing layers and in the damping layers are included. The xz plane
shear strains in the constraining layers are also considered.
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a) Multidamping layer composite beam system
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Fig. 1.. Configuration and coordinates of the multidamping layer
composite beam.

The following basic assumptions are made in the current anal-
ysis:

1) The composite beam has a unit width, (2N — 1) damping
layers and 2N laminates (i.e., constraining layers). It is simply
supported and is symmetric with respect to the xy plane.

2) The shear strain y") is constant through the thickness of
the ith laminate and yg! s also constant through the thickness
of the ith damping layer; but y5\? varies linearly through the
thickness of the ith damping layer

3) Normal strain ¢? varies linearly through the thickness of
the /th laminate.

4) Transverse displacement w(x, t) is the same for every
layer of ‘the composite beam, and only the transverse direc-
tional inertia of the composite beam is included.

5) The normal stress components o, and o, of each layer are

neglected.
In addition, the longitudinal displacement of each damping
layer is approximated to be constant through its thickness for
simplifying the calculation of the longitudinal strain energy of
the damping layer. Because of the symmetry of the composite
beam with respect to xy plane, we have

H(2N+1)—,—H,,’Y(2N+1_')——’y(’}, i=1,..., N
and
c P
Heon- = Hepy 83 =420, i=1,...,N—1

Strain Energy Analysis of the Composite Beam

When the normal stresses of each layer in the y and z
directions are neglected, only the displacement along the x
direction (axial direction) of the beam needs to be defined.
The longitudinal displacement field of the composite beam
can be described as follows.

For the ith laminated beam

i):t=
Uiz % 1) ox 2

dw H, it
z—— - <—C@'Yfz(m + kZ_l HC(k)‘Yfz(k)>
i=1,...,N 1)

where

Zl<z=szl +H;

(22)
N-1
:i:zc "'EHC(N)+ E HC(k)+ E Hk
and
Uiz, x, 1y = —tn 1 -i(—2 % 1)
(2b)
i=N+1,...,2N

For damping layer C;, we have

1
uC,-(x: 1= i[uilz=(ch—Hc(i)) Ui 7=z}

that is,

. aw
uco% 1)=& - 3Hee) 7~ ™ { Heay$® + HopyyS™)

N-1
+ E Hc(k)’yc(k)] 1= 1, 2, s N — 1 (3)
ucepl 1) = —ucan-pX, )
Y]
i=N+1,n..,2N -1
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Through the given displacement description, the longitudi-
nal and shear strain fields of the composite beam can be
determined. For the ith laminate, we have
32w HC(N) a’YC(N) N-1 a'yc(k)
=7 _ bl - E oy —Z

@@z x )=z

H,
ax? 2 ;i ax
. . )
Ze <z =z +H;
YO0 ) =79, 1) ©)
fori=1,..., N, and
D@ x t)= —@N+t1-V(—z, x, 1) )
Yy )= -1, 1) ®)

fori=N+1,...,2N.

The strain components €@, v, and 75? of damping layer
C(i) can be shown to be

Y
) Hep \o*w Hep dvS® Hgpy 0750
65(0 &, t) = <zi _ C('))_ _ l: @ 9Yxz + (N) 9Yxz

2/ ax? 2 ax 2 ax
N-1 F:} C(k)
Viz
+ H 9
k=21":+1 O ax ] ©

: 1 . :
Yoz X% 1) =50 + - G- He)llv$d — 501
G

. . (10)
zi—Hesz<z
Y0, 1) =7, 1) Can
fori=1,2,...,N~1, and
P 1) =~ 1) (12)
Ve (=2 x )= -y, x, 1) | (13)
Y2l= @ x), 1 =452V "2 x, 1) (14)

fori=N+1,...,2N=1.

As for the damping layer C(IV), since the middle surface of
this layer is the neutral surface of the composite beam, eS™ is
approximated to be zero. The shear strains of this layer are
given by

Y2, =15V 1) 15)

2z
7)%)(N)(z, X, t)= H 'Yg:];)(xs 1)
e)]

(16)
—3How <z <3Hcp

Now consider the jth layer of the ith laminate. Figures 1b
and 1c show the coordinates of the ith laminate in the global
coordinate system. We can show that

D =1z0,-2z71 and =P +z2)2 @7

Applying the stress-strain formula from Ref. 13, we have

05:'» A : Q(li,1 N 1132 NG 1i’6 N eg' 7
o9 | = | 0% 06" 0% | & (18)
e o O8> O&7| | 7

Since, here, ¢4 =0, the stress-strain relation (18) can be
reduced to

oD = [Qul NeE? + (Dl NIVG 19

747 = [Qisti, NEE? + [Qesly NV (20)
where Oi6(, j) = Q%" — (Q%M%/ 0%, Queli, J) = Q%" —

Q%1057 / 0%, and Oesiy ) = 0% — (05" 0%
The strain energy density of the jth layer is given by

U$? = 310ul MY + 5106 G NI
+ Q16 (6 NELIE) 21

Then, the strain energy of the /th laminated beam can be
integrated by

LT wN P )
uo® =§ [2 (S Ug-» dz>] dx (22)
olLj=i z®

for unit width, in which z{ =z and z{),, =z + H;. The
integration of Eq. (22) gives

L N;
U= S 2:1 P {%Q«, G DEEY + %0 G j)[(z;°2

0J=
(zgw) <§2_w>2 Py <Hc(N) "
12 ax? 2 ax
N-1 a,YC(k) azw 4 HC(N) a,YC(N)
H . Xz — + _CuyY) T ixz
+ B, How =y >6x2 < 2 ox
N-1 3,0\ 2 o Hy 37
+ kE~i Heyy ‘:;);zc ) ] = Qs (s 1)75:}(*“%@ —gz;‘
N1 AyCW 2w
+ 5 Hep—=— - ‘@—)} dx 23
kgi g T gy 3)

fori=1,2,...,N.
Because of the symmetry of the composite beam, we can
show that

U = geN+1-1, i=N+1,...,2N 4)

The total strain energy contributed by the constrained layers is
given by

N
Up=2) U® 25

i=1

The strain energy in damping layer C(i)) i=1,..., N—1)
can be calculated by

1=
Uew = _Z_S U . [Ecp(€EP) + Gep(vg?)?

0 z}
+ Gep(YEY dz} dx (26)
The strain energy of damping layer C(N) is given by
HowGem | -
yen = -C—"‘”’;‘@L' [(vfé”’)z +30% )2] o« @

As for the other N —~ 1 damping layers, we can show that
UcH = geeN-n for i=N+1,...,2N-1 (28)

Then the total strain energy contributed by the 2N — 1 damp-
ing layers is given by

N-1
Uc=UW 2%, Uco 29
i=1
When only the transverse inertia is included, the kinetic energy
of the composite beam is

1 (% aw\?
== — 30
T ZL M<at> dx €0
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where
N-1

M =2pnHy + popyHepy + .El 2(p;H; + pcpHep)
fam

The work done by g(x, ?) is given by
L
W= S qg(x, Hwx, t) dx 31
0

Assuming that the energy dissipated in the composite beam is
balanced by the work done by the external distribution load
q(x, t), the system differential equations of motion can be
obtained by the application of the Hamilton’s principle which
is given by

ar
5§ [T-WUp+Ug)+Wldt=0 (32)
0

Once the equations of motion are obtained, the viscoelastic
damping terms can be introduced by replacing all E¢;, and
Gc with corresponding complex moduli terms. Under har-
monic vibration, we can express Egp and Ggy as
EC(i) = Eé(,’)(l + l")']c(,’)) and GC(,) = Gé(i)(l + l"f]c(i)). The loss fac-
tors corresponding to extensional and shear deformation of
viscoelastic material are assumed to be the same which is a
common assumption made with many damping materials.
Values of Eé; and Gé;, and 5¢ corresponding to a fre-
quency and temperature can be obtained from material data
sheets supplied by the manufacturers. The same procedure is
followed for introducing the material damping of the compos-
ite material. Suppose the lamina has an elastic modulus E;
along the fiber direction, E, along the direction perpendicular
to the fiber, and shear modulus G,, in xy plane. When the
damping of the lamina is considered under harmonic vibra-
tion, E;, E,, and Gy, can be replaced by E(1+ i),
E,(1 + in,), and Gy5(1 + in), respectively, where 7, 12, and
712 correspond to the axial, transverse, and shear loss factors
of the lamina material.
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Fig.2 Dimensions of single, double, and triple damping layer com-
posite beam systems.

Derivation of the Frequency Equation

To find the system modal loss factors and resonance fre-
quencies, we can use the Ritz method. When the simply sup-
ported composite beam is under harmonic vibration, the com-
parison functions for w(x, ), y&, and 7%, i =1,..., Ncan

be written as

bod kax .

wix, t) = kzl Ay sin Z e (33)
> krx .

12D t)=k2_31 By cos Z et (4
i knx .

1306 )= § Cusin — et 35

where Ay, By, and Cy, i=1,2,...,N,andk=1,2,...,are
arbitrary constants to be determined. Similar functions for
fixed-fixed end conditions are given in Ref. 14.

Considering the first # modes of vibration, we can substi-
tute Egs. (25) and (29-31) into Eq. (32) by setting g(x, #)=0
and w to be a complex quantity, i.e., «w*=w2(1+iy). The
variation of w(x, ¢), v&?, and 9 will be carried on the
arbitrary constants A4,, B;, and C;,. After some mathematical
manipulation, we obtain the following homogeneous equa-
tions:

K, 1—wEM(1+in) ki, 2 K1, 2041
ki, 2 k2,2 K2, 2n+1

L k1,2n+1 k2, 2n+1 k2n+1,2n+1_
[A,] [ o]
By, 0

X |Bny| =] 0 (36)
Cln * 0
[Cna) L O]

Setting the determinant of the coefficient matrix of Eq. (36) to
zero, we have
2N+1

ki, 1 — M1 +in]AK; |+ _}_“,2 ki ;jAK, ;=0 37
' ~

which is the system frequency equation. From Eq. (37) we get
the solutions of w, and % in closed form

, 1 Im(X
W, = —m‘ RC(K]H), and = _H__l(_]]_[)

n-Re(Km)
1 2N+1
K= [kl, 1 —ZAK_L;(jE;Z kl,jAKl.j>

(38)

where

The terms Re and Im refer to the real and imaginary parts
of the complex quantity. The formulas work for the case of
2N constraining layers and 2N —1 damping layers. If the
composite beam consists of 2N damping layers and 2N +1
constraining layers, the procedure to find w, and 7 is the same
except that we will have (N +1) 'y§§, variables. In this case,
v&*D of the central laminate can be assumed to vary linearly
through its thickness. Computer programs have been devel-
oped for single, double, and triple damping layer cases to
conduct parametric studies.
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Numerical Analysis

It is well known that for a single damping layer sandwich
beam, the thickness of the damping layer and the material
properties (including shear modulus and loss factor) of the
viscoelastic material have great effect on the dynamic stiffness
and damping capacity of the sandwich beam. For multiple
damping layer composite beams, however, in addition to the
enumerated factors, the thicknesses of the constraining layers
as well as the location of the damping layers will also influence
the dynamic stiffness and damping capacity of the beam sys-
tem. Furthermore, when the constraining layers are laminates,
it is expected that the resonance frequency and modal loss
factor of the composite beam will also vary with the ply angle
of laminas in a certain laminate. This is due to the coupling
between the extensional and in-plane shear deformation in the
lamina when the composite beam is under bending motion and
also due to the change in the beam stiffness with the ply angles
of the laminas. The following parametric study shows how the
ply angle of each lamina, the damping layer thicknesses, the
laminate thicknesses, the location of damping layers in the
composite beam, and the operating temperature influence the
resonance frequency and modal loss factor of the composite
beam system.

Single Damping Layer Composite Beam

The single damping layer sandwich composite beam is
shown in Fig. 2a. The inner layers of the base beam (laminate
1) and the constraining beam (laminate 2) close to the damping
layer have ply angle 0 [i.e., 81 (1)] and usually are referred to
as compliance layers. The outer layers of the two laminates
have 0-deg ply angles and are the dominating layers to main-
tain the stiffness of the sandwich beam. The first parameter to
be studied is the ply angle of the compliance layers.

Numerical results have been generated for a sandwich beam
with a layup of [0,/6,/d/6,/04], in which d refers to the
damping layer. To compare the present model with Barrett’s
model,'? we first generate results using Barrett’s input data.
Loss factor and normalized resonance frequency of the com-
posite beam vs @ are plotted in Figs. 3a and 3b, respectively.

0.6+

Legend
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S 0JB's model, _— | T —— ——
§ 0.4 o
_Tg' _/// Second mode
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- Fig. 3 Single damping layer, 5 and , vs 61 .
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It can be observed that some minor difference exists be-
tween the two models for the second and third mode loss
factors. In his model, although Barrett has included the linear
variation of the in-plane shear deformation of the two con-
straining beams through their thicknesses, he neglected the
extensional deformation of the damping layer. In addition,
Barrett’s model was developed for a single damping layer
sandwich plate using plate theory, whereas the present formu-
lation is valid for multidamping layers. Another reason for the
minor discrepancy between the two results could be that in the
present model, some simplifications were made when employ-
ing composite laminate theory. For example, we have ne-
glected ¢, of every layer and approximate the extensional
deformation of the damping layers to be constant through
their thicknesses in calculating the longitudinal strain energy
of the damping layers.

Figure 3b shows that the ply angle 8 has very little effect on
the resonance frequency w,. The reason for this is that the
plies with angle @ are close to the neutral surface and the total '
number of these plies are only half of those plies with 0-deg
ply angle. Further study of this (results not shown here) has
shown that when the number of compliance layers exceed the
layers with 0-deg ply angles, the compliance layers will domi-
nate the stiffness of the composite beam; thus increasing the
ply angle of the compliance layer will reduce the dynamic
stiffness of the sandwich beam. The result of Fig. 3a is obvi-
ous. Since the lamina material is much stronger than the
damping material, the two constraining beams deform almost
independently in flexural vibration. When @ increases, the
neutral surfaces of these two beams shift away from the mid-
dle surface of the composite beam thus increasing the shear
deformation in the central damping layer, which leads to
increased damping. Therefore, it can be concluded that in-
creasing the ply angles of the inner layers (compliance layers)
can enhance the damping capacity of the sandwich composite
beam without reducing the stiffness of the composite beam, if
the compliance layers are relatively thinner than the layers
with 0-deg ply angle. The normalized resonance frequency in
Fig 3b (and all other frequency plots) is normalized with
respect to a constant (w/L)? V(H3E))/(12M), where H is the
total thickness of the composite beam.

The design of the composite beam to have optimum loss
factor for a desired dynamic stiffness requires a knowledge of
the variation of dynamic parameters with various structural
parameters. We first select the total thickness of the composite
beam, the lamina material, the damping material, and the ply
angle of the compliance layers. The parameters left to be
determined are the damping layer thickness H¢, the thickness
T1(1) of compliance layer (or the thickness of the outer layers
with O-deg ply angle), and the operating temperature 7. The
variation of the maximum loss factor with these three parame-
ters can be shown effectively by the so-called carpet plot.
Figures 4a and 4b show two different carpet plots for the
composite beam. The total thickness of the composite beam is
kept to be 27 layers and each layer has a thickness of 0.127 mm
(5 mils). The ply angle #1(1) of the compliance layer is set to be
90 deg. The length of the beam is 0.254 m. The 3M ISD-112
damping material is chosen, and the formulas for calculating
the shear storage modulus G¢ (7, f) and material loss factor »,
(T, f) of the damping material corresponding to a frequency f
and environmental temperature 7 can be referred from Ref. 8.
The lamina material property data are given by: E; = 148
GPa, E,=8.96 GPa, Gy =4.48 GPa, p=1520 kg/m3,
v12 = 0.35 (axial Poisson’s ratio), n, = 0.00128 (axial loss fac-
tor), and 75, = 0.011 (shear loss factor).

In Fig. 4a, T'1(1) is varied from one layer (0.127 mm) to 10
layers (12.7 mm) and H is varied from one layer to seven
layers. When 7'1(1) is fixed, for a given value of H, there will
be a unique value of T which yields maximum system loss
factor as shown in Fig. 4a. Observation shows that for a fixed
H, the maximum loss factor does not always increase with
T1(1). For example, when Hc = 0.127 mm, maximum loss
factor increases up to 7°1(1) = 5 X 0.127 mm, then decreases
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layer.

with further increase in T1(1). To design a sandwich beam
having optimal loss factor corresponding to an operating tem-
perature range, we can use these carpet curves in Fig. 4a. For
every value of T, there are several combinations of 71(1) and
H_ values such that the modal loss factor is maximum. We
may also search along the curve H, = const to find a T1(1)
value or vice versa so as to get an optimal loss factor.
Figure 4b in which H varies from one layer to seven layers
and T varies from —12.22 to 93.33°C is another form of the
carpet plot. Here the loss factor is obtained by first fixing the
thickness of the damping layer H, and operating temperature
T, and then changing the thickness of compliance layers T1(1)
such that the modal loss factor is maximum. This plot shows
that for very low temperature, e.g., T = —2.22°C, the thick-
ness of the compliance layers T'1(1) to get maximum loss
factor for different H, is almost the same. In fact, if the
operating temperature is near or below the glass transition
temperature of the damping material, the damping material
will become brittle and its modulus will approach the modulus
of the lamina material. Then modal loss factor will increase
proportionally with H-. To design a sandwich beam having
maximum loss factor corresponding to a fixed operating tem-
perature T, we can search for suitable 7°1(1) and H values
along the curve where T = const as shown in Fig. 4b. It should
be noted that the given variations presented in the carpet plots
are valid only for the damping material chosen; the carpet plot
for a different damping material could be entirely different.

Double Damping Layer Composite Beam

Figure 2b shows the double damping layer composite beam.
The inner layers of laminates 1 and 3 that are close to the
damping layer have thickness 7°'1(1) and ply angle #1(1) and
are compliance layers. The plies of laminate 2 can also func-
tion as compliance layers and have ply angles 02(1) or 62(2),
where §2(1) or 62(2) correspond to the ply angles of those
layers located in the negative or positive x axis. The total
thickness of the composite beam is kept to be 32 layers in all
the following plots and the length of the beam is set to be

0.254 m as before. The lamina and damping materials are the
same as those used in Fig. 4.

Figure 5a shows the case in which only the ply angles §1(1)
[i.e., thetal(1) in Fig. 5a] of the compliance layers in laminates
1 and 3 are changed and all other layers of the composite beam
have 0-deg ply angles. Other input data are Hy = 0.127 mm,
TI)=T112)=6x0.127 mm and T2(1)=T7T2(2)=3X
0.127 mm. It can be observed from Fig. 5a that the increase of
n with 61(1) for the second to fourth mode is significant, but
for the first mode # decreases somewhat with 61(1).

Figure 5b shows the case in which only the ply angles §2(1)
[i.e., theta2(l) in Fig. 5b] of the laminate 2 (central laminate)
are changed and all other laminas of the composite beam have
0-deg ply angles. Each of the three laminates has 10 layers and
the damping layer has a thickness of 0.127 mm. The variation
of n with 62(1) is similar to that in Fig. 5a. It has also been
observed that if laminate 2 is relatively thinner than laminate
1 or 3, 5 changes very little with 2(1). One such numerical
example has been shown in Ref. 15. But when laminate 2 is
thicker than laminate 1, 2(1) will have significant effect on 7.
For a composite beam with constant thickness, when the num-
ber of layers of laminate 2 increases, laminates 1 and 3 will
become thinner, which makes laminate 2 to be the dominating
laminate. The variation of # and w, with the central laminate
thickness H, is plotted in Figs. 6a and 6b, respectively. Here,
H¢ = 0.127 mm and the ply angles of all of the laminas in the
composite are zero. The w,-H, curve is obvious. When H, is
very small, the stiffness of the composite beam is determined
by the thickness of laminates 1 and 3. On the other hand,
when H, is much larger than the thickness of laminates 1 and

* 3, the stiffness of the composite beam will be dominated by

laminate 2. The %-H, curve shows that lower stiffness corre-
sponds to higher modal loss factor and vice versa; there
exists an optimum value of H, for maximum loss factor. These
two plots clearly show the tradeoffs between the stiffness and
the damping capacity that always exist in the design of the
composite beam systems incorporating viscoelastic damping
materials.
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Similar to the sandwich beam case, while designing a double
damping layer composite beam, we may fix some parameter
such as the total thickness of the composite beam, the ply
angle of the laminas, and the thickness of the central beam,
and let the other parameters vary. Two carpet plots useful in
the design are shown in Figs. 7a and 7b. In Fig. 7a, T1(1)
varies from 0.127 mm to 6 X 0.127 mm and H varies from
0.127 mm to 7 X 0.127 mm. In Fig. 7b, the operating temper-
ature T varies from 4.44°C (40°F) to 48.89°C (120°F) and H,
varies from 0.127 mm to 7 X 0.127 mm. In both figures, the
ply angles of the compliance layers in the two outer laminates
are set to be 90 deg which is the best value for obtaining
maximum loss factor. All of the other ply angles are kept to be
zero. The central beam has four layers. Figure 7a can be used
to determine the 71(1) and H values for the composite beam
to have maximum loss factor corresponding to an operating
temperature range. Figure 7b can be employed to find the
desired H- and T1(1) values of the composite beam to have
maximum loss factor corresponding to a fixed operating tem-
perature.

Triple Damping Layer Composite Beam

The triple damping layer composite beam is shown in Fig.
2¢. In this case, laminates 2 and 3 and the inner layers of
laminates 1 and 4 can function as compliance layers. The total
thickness of the composite beam is kept to be 31 layers in all
of the following plots. The length of the composite beam and
the damping and lamina material are the same as before except
for the case of two different damping materials.

Figures 8a and 8b show the variation of # with 81 (1) for two
different cases. Here 61(1) [i.e., thetal(l) in Figs. 8a and 8b}
corresponds to the ply orientation of the compliance layers in
laminates 1 and 4. All of the other laminas of the composite
beam have 0-deg ply angles. In both figures, the damping
layers have the same thickness, i.e., Heqy = Hepy = 0.127 mm.
In Fig. 8a, H, = 12.7 mm, H, = T1(1) = 0.508 mm, and T1(2)
=0.762 mm. In Fig. 8b, H, = H, = 0.889 mm, T'1(1) = 0.254
mm, and 71(2) = 0.635 mm. Numerical data (not plotted
here) shows that the w, corresponding to Fig. 8a change little
with 81 (1) for the second to fourth modes, but the w, corre-
sponding to Fig. 8b is almost constant with #1(1) for all of the

four modes. The reason for this is that there are more plies in
the compliance layers for data used in Fig. 8a than for Fig. 8b,
which makes both w, and % corresponding to data in Fig. 8a to
be more sensitive than those of Fig. 8b. It has also been
observed that when the thickness of laminates 2 and 3 are
larger compared with the thickness of laminate 1 (for example,
H2>%H1), increasing the ply angle of laminates 2 and 3 will
significantly increase the modal loss factors of the composite
beam. .

Figures 9a and 9b plots the variation of 5 and w, with the
thickness H, of laminate 1, respectively, in which the ply angle
of each lamina is zero and Hcyy = Hepy = 0.127 mm. When H;
is very small, laminates 2 and 3 act as base beams, and lami-
nates 1 and 4 become thin constraining layers. In this situa-
tion, the composite beam has maximum dynamic stiffness and
very low loss factor. Similarly, when H, is very small, lami-
nates 1 and 4 become the dominating beams, and, in this case
also, the dynamic stiffness is still high, and the system loss
factor is low. There are, however, some values of H; and H,,
midway between these extremes that yield maximum loss fac-
tor as seen in Fig. 9a.

Figures 10a and 10b show the variation of # and w, with the
thickness Hy, of the central damping layer, respectively. The
input data are T71(2) = T2(2) = 0.635 mm, T1(1) = T2(1) =
0.254 mm, 62(2) = 0 deg and 61(1) = 62(1) = 90 deg. When we
fix the thicknesses of the four laminates and increase the
thickness of the central damping layer, the thicknesses of the
two outer damping layers C(1) and C(2) will be reduced
simultaneously since the total thicknesses of the composite
beam is kept constant. It can be found from these two figures
that increasing H) will improve the damping capacity of the
composite beam, but the resonance frequency will be reduced
to some extent (especially for higher modes). The same obser-
vation has been verified for different ply angles and different
combinations of H; and H,.

An added advantage of triple damping layer composite
beam is that we may choose different damping materials for
C(1) [same as C(3)] and C(2), which will enable the composite
beam to possess significant damping capacity over a wide

o ’ Hc=0.889mm
2 o.6s
L E T
£ o.60
S o.55-
S
S
9 o0.s01 -
o T1(1)=0.127mm - NN
S 0.4s1
TI(1)=0.254mm . T —
He=0.127mmy
0.40 - v r
a) 7 12 ) 22 27
Operating temperature (C)
Hc=0.889mm
o 277 He=0.762mm
o ,
2
€ o.64
E
- 0.5
e
e
S
© 0.4
R RS e ot
s _______________
3 031 AW
oa T=4.44C(40F) T=48/889C(120F)
“0 01 02 03 04 05 06 07 08 0.9
b) Compliance layer thickness T1(1) (mm)

Fig. 7 - Carpet plots of optimal 4y vs 7 and 71(1), double damping

layer.



RAO AND HE: DESIGN OF LAMINATED COMPOSITE BEAMS 743

range of operating temperature. Figure 11a shows the varia-
tion of loss factor with operating temperature for two cases
when all of the three damping layers are the same. The corre-
sponding resonance frequency-temperature curve for the 3M
ISD-113 damping material case is plotted in Fig. 11b. It is
clear from Fig. 11 that in this case, the temperature ‘‘band-
width’” where the composite beam has maximum loss factor
will be relatively narrow. But if we select Soundcoat D mate-
rial for C(2), and 3M ISD-113 material for C(1) [and C(3)],
the loss factor and stiffness of the composite beam will be
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greatly improved as shown in Figs. 12a and 12b. The input
data for these four plots are the same as those for Fig. 10
except that the thicknesses of the damping layers are fixed to
be Hegy = Hepy = 0.127 mm. Further numerical calculations
show that when H, is relatively small compared with H,, the
left peak will be higher than the right one for a constant total
thickness of the three damping layers, which means that most
of the shear deformation occurs in the two outer damping
layers instead of the central damping layer. As H, increases,
the right peak due to the central high temperature damping
material will go up while reducing the left peak. When H, is
larger than H,, the composite beam becomes much like a
sandwich beam with two constraining damping layers on its
top and bottom surface. In this case, the central damping layer
will undergo more shear deformation than the two constrain-
ing damping layers, and thus it is natural that the high temper-
ature damping material will dominate the damping of the
composite beam. In addition, it has also been observed that
reducing Hc, and increasing Hcp) will raise the right peak
and reduce the left peak, which can be explained by the results
shown in Fig. 10. Furthermore, the raising of either peak will
raise the overall levels of damping between the two peaks.

Comparison with Experiments

The cocured composite panels were fabricated using 3M
SP-319 carbon epoxy prepreg and 3M SJ2015X type 1005
viscoelastic damping material. The prepreg ply has a nominal
thickness of 0.14 mm (0.0055 in.) and the damping material
has a nominal thickness of 0.127 mm (0.005 in.). A combina-
tion of 13 layers of prepreg and viscoelastic material were laid
up to from a composite plate with 133.35 mm (5.25 in.) width,
304.80 mm (12 in.) length, and 1.82 mm (0.0715 in.) thickness
of uncured composite material. The composite layups were
placed into an autoclave and the temperature and pressure
cycle recommended by the manufacturer of the prepreg mate-
rial were followed to cocure the prepreg and viscoelastic mate-
rials. Once the large plates are cocured, they are cut into beam
samples of 25.4 mm (1 in.) width and 254.0 mm (10 in.)
length.
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Table 1 Comparison between theoretical and experimental natural frequencies of
beam layups with fixed-fixed end conditions
Mode 1, Hz Mode 2, Hz Mode 3, Hz
Layup Theory Experiment Theory Experiment Theory Experiment
[013] — 291.2 — 858.9 —_ 1760
[06/d /06) 309.0 278.7 789.1 780.7 1459. 1463
[0s/d/0/d /0s5] 270.2 251.9 687.5 699.7 1192 1296
Table 2 Comparison between predicted and experimental loss factors of
beam layups with fixed-fixed end conditions
Mode 1, % Mode 2, % Mode 3, %
Layup Theory Experiment Theory Experiment Theory Experiment
[013] —_— 0.58 2.20 —_ 6.48
[06/d /0¢] 9.43 6.07 7.69 10.20 8.93
[0s/d/0/d /0s] 13.40 8.10 9.54 13.48 11.43
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Fig. 11 Triple damping layer, 3 and «, vs T for same damping
material.

The beams were tested using standard experimental modal
analysis technique as detailed in Ref. 14. Both cantilever and
fixed-fixed type boundary conditions were used. The length of
the beam for the fixed-fixed end conditions was 228.6 mm (9.0
in.). A PCB 309A accelerometer was used to measure the
vibration response and a PCB 086B80 micro modal hammer
was used to excite the structure. The output from the acceler-
ometer and the instrumented hammer were connected to a HP
35660A dynamic signal analyzer to measure the frequency
response function. Five averages were taken to obtain the
frequency response functions at each point on the beam and
care was taken to minimize the noise by monitoring the coher-
ence function between the two channels. The frequency re-
sponse functions were then transferred to the SMS Star modal
software system, and the frequency response functions were
curve fit using a polynomial function to obtain the natural
frequency and damping ratio for the first three bending modes
of the composite beams. Three different modal tests were
performed for each beam and the values for natural frequency
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Fig. 12 Triple damping layer, y and w, vs T for different damping
materials.

and damping were averaged to determine mean values for the
system.

Tables 1 and 2 show the results of both theoretical and
experimental damping ratios and natural frequencies for the
first three bending modes for the fixed-fixed end conditions.
The [0;3] lay up corresponds to the undamped case with no
damping material. As can be seen, there is'almost an order of
increase in the damping capacity of the beam with the addition
of one damping layer. There is, however, a decrease in the
natural frequency as seen in Table 1 for all of the three modes.
The natural frequency of the beam is related to the dynamic
stiffness, and this decrease in stiffness is caused by the addi-
tion of the damping layer which has a much lower bending
stiffness compared with the prepreg material. The addition of
two damping layers further increases the damping ratio of the
beam but again with some reduction in the dynamic stiffness
as evidenced by decrease in system natural frequencies.

From Table 1, it can be seen that the agreement between
theory and experiment is good for the natural frequencies for
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both single and double damping layer cases. The experimental
values for the damping ratio are, however, lower than the
values predicted by the theoretical model for both cases (Table
2). The reason for this discrepancy could be attributed to the
uncertainties in the estimated material properties of the damp-
ing materials. Precise knowledge of damping material shear
modulus, loss factor, and their frequency and temperature
dependence is important to accurately predict the damping
using the theoretical model. In this research, the material data
supplied by the manufacturers were used without any verifica-
tion by independent tests. Furthermore, it has been observed
that the predicted values of damping are extremely sensitive to
the material properties.

Conclusions

A comprehensive analytical formulation for the vibration
and damping analysis of a laminated composite beam with
multiple damping layers is described in this paper. The varia-
tion of damping capacity and dynamic stiffness of single,
double, and triple damping layer composite beams with struc-
tural parameters and operating temperature is studied through
a number of numerical examples. The parametric design of
composite beam systems for optimal damping capacity and
desired dynamic stiffness can be obtained through the carpet
plots presented in this paper. The following general conclu-
sions have been drawn from the numerical study.

1) For the single damping layer sandwich beam, if the
thickness of the compliance layers are small compared with
that of the outer layers with 0-deg ply angles, increasing the
ply angles of the compliance layers will improve the modal
damping capacity without significantly reducing the dynamic
stiffness of the sandwich beam.

2) For double and triple damping layer composite beams,
the modal damping capacity can be enhanced by increasing the
ply angles of the compliance layers in the outer laminates. The
same is true for the inner laminates provided the inner lami-
nate thicknesses are close to or larger than the outer laminates.

3) The modal loss factors of the triple damping layer com-
posite beam increase with an increase in the thickness of the
central damping layer if the total thickness of the damping
layers are kept constant. But the increase in loss factor will
lead to a reduction in the dynamic stiffness. Different damp-
ing materials can be selected to design a triple damping layer
composite system possessing significant damping capacity
over a wide operating temperature range.

It should be noted that it is almost impossible to obtain
enhanced system damping without some penalties in stiffness.
If these penalties can be kept within allowable limits, then
laminated cocured panels are extremely effective for passive
vibration and noise control. Good agreement between theory
and experiment was obtained for the natural frequencies of
the system. The theoretical model developed as part of this
research can be used in the design and optimization studies of
cocured laminated panels incorporating viscoelastic damping
materials.
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